Summarising and validating test accuracy results across multiple studies for use in clinical practice. | Biowebspin
Statistics in medicine. 2015 05 05

Summarising and validating test accuracy results across multiple studies for use in clinical practice.

?



Citimpact
Riley RD, Ahmed I, Debray TP, Willis BH, Noordzij JP, Higgins JP, Deeks JJ. Research Institute of Primary Care and Health Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
Abstract
Following a meta-analysis of test accuracy studies, the translation of summary results into clinical practice is potentially problematic. The sensitivity, specificity and positive (PPV) and negative (NPV) predictive values of a test may differ substantially from the average meta-analysis findings, because of heterogeneity. Clinicians thus need more guidance: given the meta-analysis, is a test likely to be useful in new populations, and if so, how should test results inform the probability of existing disease (for a diagnostic test) or future adverse outcome (for a prognostic test)? We propose ways to address this. Firstly, following a meta-analysis, we suggest deriving prediction intervals and probability statements about the potential accuracy of a test in a new population. Secondly, we suggest strategies on how clinicians should derive post-test probabilities (PPV and NPV) in a new population based on existing meta-analysis results and propose a cross-validation approach for examining and comparing their calibration performance. Application is made to two clinical examples. In the first example, the joint probability that both sensitivity and specificity will be >80% in a new population is just 0.19, because of a low sensitivity. However, the summary PPV of 0.97 is high and calibrates well in new populations, with a probability of 0.78 that the true PPV will be at least 0.95. In the second example, post-test probabilities calibrate better when tailored to the prevalence in the new population, with cross-validation revealing a probability of 0.97 that the observed NPV will be within 10% of the predicted NPV.
PMID: 25800943

LinkOut - more resources

Title
Abstract
Authors
Journal
ISSN
Volume
Issue
Chapter
Edition
Start page
End page
Year
Month
Day
Book Title
Institution
Share on social networks :
Look on Google if the pdf is available or the publication is cited in other pdfs